
From Tactics to Structure Editors for Proofs
Extended Abstract

Xuanrui (Ray) Qi
Department of Computer Science

Tufts University
Medford, Massachusetts, USA

xqi01@cs.tufts.edu

ABSTRACT
For many users of theorem provers, tactics are merely an inelegant
solution to a difficult problem. However, we believe that tactics
deserve more attention and appraisal, and well-designed tactics
are actually a well-structured way to construct programs. In this
work, we will explore the connection between tactics and structure
editors, as well as emphasize the importance of designing tactics
with well-defined semantics with respect to proof terms and proof
states.

CCS CONCEPTS
• Theory of computation → Type theory; • Software and its
engineering → Software development techniques; Domain
specific languages;

KEYWORDS
Tactics; structure editors; proof assistants; dependent types

ACM Reference Format:
Xuanrui (Ray) Qi. 2019. From Tactics to Structure Editors for Proofs: Ex-
tended Abstract. In Proceedings of Off the Beaten Track 2019 (OBT’19). ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 PROPOSAL
An alternative to traditional text-based editors, structure editors
have the benefit that their edit states directly correspond to program
structure [9]. However, despite the many advantages of structure
editors, which will not be reiterated here, traditional source-based
editors can be much efficient for most programmers. A nice mid-
dle ground would be to combine text-based editing and structure
editing, which has already generated a line of research. A lucrative
feature of structure editors, for example, is the ease of adding au-
tomation to the editor; one may want to have a structure editor’s
automation features while retaining the ability to directly edit the
source code in text form.

On the other hand, a similar dilemma exists in the world of the-
orem proving with dependent types: Agda and Idris-style “proofs-
as-terms” development of proofs have the benefit of clarity and
directness, but for large, complex proofs, Coq-style tactic-based

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
OBT’19, January 2019, Lisbon, Portugal
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

theorem proving can be much easier to handle, due to the high level
of automation made possible by tactics. However, tactics are widely
regarded as “hacky” and “inelegant”, as they are highly opaque and
mask the computational nature of proofs à la Curry-Howard.

Much of the previous work on tactics, such as Mtac [10] and
Mtac2 [3] have essentially been on bringing tactic-based theorem
proving more in-line with “direct-style” proving. However, we be-
lieve that it is important to treat tactics as first-class citizens, and
that the dilemma between tactics and direct proof construction is a
false dilemma. Instead of having to choose between one or another,
why not embrace both and combine direct-style proof construction
and tactic-based theorem proving within a single system?

2 TACTICS AS EDIT ACTIONS
In a structure editor like Hazel, applying an edit action transforms
an edit state into another edit state [8]. Similarly, a tactic transforms
a proof state into another proof state. A cursor in Hazel corresponds
to a focused goal in a theorem prover. More correspondences could
be drawn betweenHazel-style structure editors and Coq-style tactic-
based theorem provers, and the following table lists a few:

Structure editor (e.g. Hazel) Theorem prover (e.g. Coq)
edit action tactic
edit state proof state
cursor focused goal

moving the cursor focusing on a different goal
empty hole unproven goal

non-empty hole partially proven goal
action macros tacticals

In other words, just as proofs are programs, tactics are just edit
actions for proofs, and a theorem prover is just a structure editor
for proofs. However, with Ltac as its “action language”, Coq is not a
good structure editor. For example, unlike good structure editors for
programs, it does not actually show us the overall state of the proof,
and neither does it suggests tactics to use based on the current
proof state: a root cause of this chaotic behavior here is that we are
not actually sure how tactics work and why they actually work (or
not).

3 LESSONS FROM HAZEL
We believe that lessons from the development and design of Hazel
could help here. One major complaint about tactics — especially
Coq tactics — is that they do not have clear static specifications, and
thus can be tedious to debug or maintain, and almost impossible to
reason about. A solution to this would be to formalize the semantics

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


OBT’19, January 2019, Lisbon, Portugal X. Qi

of tactics in a Hazel-style edit action model, specifying the effect of
each tactic on a proof state.

It is not the case that semantics of tactics have never been formal-
ized before: the semantics for both Coq’s Ltac [2] and Edinburgh
LCF’s tactic language [7] have been formalized. Our proposal here,
however, differ from previous work in our approach towards se-
mantics for tactics: instead of considering proofs and goals as a
stack machine separate from the underlying dependently-typed
language, we view proof states as incomplete programs, in the spirit
of Curry-Howard, and specify the semantics of tactics in terms of
how theymanipulate and change the proof state. This view of proof
states is not new either [5, 6]. Recently, Korkut’s work on edit-
time tactics in Idris [4] has explored this approach as well, but we
feel that our vision is somewhat different from edit-time tactics in
Idris: specifically, edit-time tactics in Idris are considered a form of
metaprogramming macros that exist outside of the abstract syntax
tree, and require ad-hoc editor extensions. However, we envision
tactics to be fully integrated into the term language, with first-class
editor support. As far as we know, no one has yet formalized the
semantics of tactics this way.

Having formal semantics is a good first-step towards a sound
and productive tactic language, but it is not enough. We would
also want to prove that our tactic semantics are actually sensible:
in other words, we would prove a metatheorem akin to the action
sensibility theorem in [8]. In theorem proving parlance, we may
informally restate this theorem as: if a proof state with a focused
goal is statically meaningful, i.e. after removing the focus the term
is well typed, then applying any tactic to the proof state will give
us a statically meaningful proof state. As we introduce dependent
types, however, a type-level sensibility theorem would be required:
before we claim that applying a tactic gives us a well-typed term,
we must first show that the type ascribed to the resulting proof
state (after “focus erasure”) is indeed a meaningful type.

This theorem is somewhat similar to Mtac’s preservation and
safety theorems [10], and should enforce the same safety guar-
antees, but our approach has two advantages over Mtac: (1) our
approach results in a much more idiomatic proof style, and (2) our
approach allows reasoning about tactics which could not be im-
plemented withinin the Mtac framework (such as low-level tactics
like apply). Compared to the Mtac approach, our approach is much
more heavyweight, but we conjecture that only a small subset of
“core” tactics would need to be formalized and proven correct; most
useful tactics could be implemented in terms of those core tactics. It
would also be more difficult to prove tactic correctness within the
proof system itself, but techniques akin to elaborator reflection [1]
might be able to make this possible.

Finally, one important virtue of tactics is that they are pro-
grammable and customizable: so are edit actions. While Hazel does
not have action-level programming as of yet, this is a feature that
is currently being actively developed, and we may expect to have a
sound metatheory for tactic-level programming.

Having these machinery in place, it is not hard to envision a
combination of tactic-based and directly-style theorem proving: just
like structure editors may have limited support for free-form input,
someone proving a theorem might write an otherwise complete
proof term, place the focus (i.e., “cursor”) on the desired goal, and

then use tactics (i.e., “edit actions”) to construct that part of the
proof.

4 AN EXAMPLE: SPECIFYING A REWRITE
TACTIC

At the moment, it is impossible to precisely specify a rewrite
edit action à la Hazel, as designing a dependently typed version of
Hazel is still an open research problem. However, assuming that a
dependently typed version of Hazelnut has a similar structure as
Hazelnut presented in [8], we can write an imprecise inference rule
for the rewrite edit action.

For the purposes of our example, let us consider an H-expression
language similar to McBride’s Oleg development calculus [6], and
a Z-expression language that simply superimposes a “cursor” (or
“focus”; we will use the two terms interchangeably) onto an H-
expression.

ÛΓ ⊢ ê ⇒ Ûτ
α
−−→ ê ′ ⇒ Ûτ ′

ÛΓ ⊢ ê ⇒ Ûτ ÛΓ ⊢ s = t ⇒ eq(Ûτ ′) ê [s 7→ t] = ê ′ s ⊑ ê

ÛΓ ⊢ ê ⇒ Ûτ
rewrite s=t
−−−−−−−−−−−→ ê ′ ⇒ Ûτ

(Rewrite)

Here, the judgment s ⊑ e means that s is a sub-expression in e .
It is clear that this formalization is consistent with our intuition
about the rewrite tactic, but as this formalization is by nature
preliminary and imprecise, it might not accurately capture details
about rewrite.

ACKNOWLEDGMENTS
I would like to thank Cyrus Omar, Ian Voysey, Matthew A. Hammer,
and Joomy Korkut for discussion that inspired this work, as well
as Jacques Garrigue for Coq hacks which ultimately motivated me
to carry out this work. I thank Cyrus, Ian and Joomy again for
providing feedback on the draft version of this talk proposal.

REFERENCES
[1] David Christiansen and Edwin Brady. 2016. Elaborator Reflection: Extending

Idris in Idris. In Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming (ICFP 2016). ACM, New York, NY, USA, 284–297.
https://doi.org/10.1145/2951913.2951932

[2] Wojciech Jedynak, Małgorzata Biernacka, and Dariusz Biernacki. 2013. An
Operational Foundation for the Tactic Language of Coq. In Proceedings of the
15th Symposium on Principles and Practice of Declarative Programming (PPDP ’13).
ACM, New York, NY, USA, 25–36. https://doi.org/10.1145/2505879.2505890

[3] Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas, and Derek
Dreyer. 2018. Mtac2: Typed Tactics for Backward Reasoning in Coq. Proc. ACM
Program. Lang. 2, ICFP, Article 78 (July 2018), 31 pages. https://doi.org/10.1145/
3236773

[4] Joomy Korkut. 2018. Edit-Time Tactics in Idris. Master’s thesis. Wesleyan Univer-
sity.

[5] Marko Luther and Martin Strecker. 1998. A guided tour through Typelab. Tech-
nical Report 98-03. Universität Ulm.

[6] Conor McBride. 1999. Dependently Typed Functional Programs and their Proofs.
Ph.D. Dissertation. University of Edinburgh.

[7] Robin Milner. 1984. The use of machines to assist in rigorous proof. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engi-
neering Sciences 312, 1522 (1984), 411–422. https://doi.org/10.1098/rsta.1984.0067

[8] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A.
Hammer. 2017. Hazelnut: A Bidirectionally Typed Structure Editor Calculus. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming

https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1145/2505879.2505890
https://doi.org/10.1145/3236773
https://doi.org/10.1145/3236773
https://doi.org/10.1098/rsta.1984.0067


From Tactics to Structure Editors for Proofs OBT’19, January 2019, Lisbon, Portugal

Languages (POPL 2017). ACM, New York, NY, USA, 86–99. https://doi.org/10.
1145/3009837.3009900

[9] Tim Teitelbaum and Thomas Reps. 1981. The Cornell Program Synthesizer: A
Syntax-directed Programming Environment. Commun. ACM 24, 9 (Sept. 1981),
563–573. https://doi.org/10.1145/358746.358755

[10] Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar Nanevski,
and Viktor Vafeiadis. 2013. Mtac: A Monad for Typed Tactic Programming
in Coq. In Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming (ICFP ’13). ACM, New York, NY, USA, 87–100. https:
//doi.org/10.1145/2500365.2500579

https://doi.org/10.1145/3009837.3009900
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/2500365.2500579
https://doi.org/10.1145/2500365.2500579

	Abstract
	1 Proposal
	2 Tactics as Edit Actions
	3 Lessons from Hazel
	4 An example: specifying a rewrite tactic
	Acknowledgments
	References

