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What are tactics?

Two main types of UIs for theorem proving:
direct style: proofs are programs, so we write them just like we write
programs (Agda, Idris).
tactics: closer to how we reason about things on paper and how we
think about reasoning, e.g. recursive proof term is “induction” not
“recursion” (Coq, Lean, Idris Pruviloj).
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What is my talk about?

User interfaces for theorem provers & program editors
How can we use tactics to improve theorem prover & editor UIs?
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Motivation of this talk: Coq nightmare

Sometimes, dependently-typed programming can be quite tricky and dirty:
byzantine invariants;
case bloating.
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Problems with each approach

Direct style: little automation available (boring pattern-matching,
boring code).
Tactics: little idea of what you’re actually doing; bad for actual
programming.
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My proposal

Design new program editors that integrate tactics as an automation
method
Design new theorem provers that allow mixing direct-style & tactics
Study formal semantic foundations for tactics
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Proposal 1: use tactics as automation

Help automate case-splitting, especially in presence of indexed
datatypes/GADTs (induction)
Writing trivial clauses automatically using program search/synthesis
(à la intuition & crush)
More complex tactics might also find their uses in programming, with
or without dependent types.
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Holes can also help here
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Proposal 2: combining tactics & programs

Happens very often when programming with complex types: not all
details we care about
Automate chores using edit-time tactics and hide them in local,
collapsable holes
Challenge: actually generate good code
But, do not erase tactics from the program: even if other parts of the
program change, the housekeeping can stay the same
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We may want to write programs like this...

[does not actually work in Coq]
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But what we really want is something more like this...
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Proposal 3: understand the semantic foundations of tactics

Tactics are transformations on open terms
We should study the semantics of those transformations formally
Benefits: create tactics that compose well, prevent tactics from
breaking valid proofs/programs (like Ltac)
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Building on previous work

Hazelnut paper (POPL ’17) gave semantics of some very basic
“tactics” (term insertion, moving to other holes)
Open problem: design a language to program well-behaved tactics
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Putting it all together

Traditional sorce code based editors are inadequate in a “typed”
world; too much focus on minor details requireds
Tactics can help programmers automate away those chores and focus
on writing good and correct programs!
I propose using tactic-enhanced program editors, with semantically
sound tactics, to write programs.
More automation, more editor assistance, less bookkeeping, better
programs.
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