
From Tactics to Structure Editors for Proofs

Xuanrui (Ray) Qi

Department of Computer Science
Tufts University

Off the Beaten Track ’19, 19 Jan 2019

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 1 / 14



What are tactics?

Two main types of UIs for theorem proving:
direct style: proofs are programs, so we write them just like we write
programs (Agda, Idris).
tactics: closer to how we reason about things on paper and how we
think about reasoning, e.g. recursive proof term is “induction” not
“recursion” (Coq, Lean, Idris Pruviloj).

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 2 / 14



What is my talk about?

User interfaces for theorem provers & program editors
How can we use tactics to improve theorem prover & editor UIs?

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 3 / 14



Motivation of this talk: Coq nightmare

Sometimes, dependently-typed programming can be quite tricky and dirty:
byzantine invariants;
case bloating.

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 4 / 14



Problems with each approach

Direct style: little automation available (boring pattern-matching,
boring code).
Tactics: little idea of what you’re actually doing; bad for actual
programming.

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 5 / 14



My proposal

Design new program editors that integrate tactics as an automation
method
Design new theorem provers that allow mixing direct-style & tactics
Study formal semantic foundations for tactics

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 6 / 14



Proposal 1: use tactics as automation

Help automate case-splitting, especially in presence of indexed
datatypes/GADTs (induction)
Writing trivial clauses automatically using program search/synthesis
(à la intuition & crush)
More complex tactics might also find their uses in programming, with
or without dependent types.

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 7 / 14



Holes can also help here

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 8 / 14



Proposal 2: combining tactics & programs

Happens very often when programming with complex types: not all
details we care about
Automate chores using edit-time tactics and hide them in local,
collapsable holes
Challenge: actually generate good code
But, do not erase tactics from the program: even if other parts of the
program change, the housekeeping can stay the same

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 9 / 14



We may want to write programs like this...

[does not actually work in Coq]

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 10 / 14



But what we really want is something more like this...

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 11 / 14



Proposal 3: understand the semantic foundations of tactics

Tactics are transformations on open terms
We should study the semantics of those transformations formally
Benefits: create tactics that compose well, prevent tactics from
breaking valid proofs/programs (like Ltac)

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 12 / 14



Building on previous work

Hazelnut paper (POPL ’17) gave semantics of some very basic
“tactics” (term insertion, moving to other holes)
Open problem: design a language to program well-behaved tactics

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 13 / 14



Putting it all together

Traditional sorce code based editors are inadequate in a “typed”
world; too much focus on minor details requireds
Tactics can help programmers automate away those chores and focus
on writing good and correct programs!
I propose using tactic-enhanced program editors, with semantically
sound tactics, to write programs.
More automation, more editor assistance, less bookkeeping, better
programs.

Xuanrui (Ray) Qi (Tufts University) From Tactics to Structure Editors for Proofs OBT 2019 14 / 14


