On operator algebras, linear logic and categorical quantum mechanics

On operator algebras, linear logic and categorical quantum mechanics

Xuanrui Qi 1

¹Graduate School of Mathematics, Nagoya University

September 15, 2023 ALGI 2023, Fujisawa, Kanagawa, Japan

Introduction

- This presentation is about work in progress and preliminary ideas.
- Therefore, mainly ideas and conjectures and not really any results.
- Please discuss with me if any of these ideas interest you!

What are operator algebras?

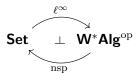
- Certain kinds of normed rings (precisely, associative algebras) over $\mathbb R$ or $\mathbb C$
- Of special interest are C^* and von Neumann (W^* -) algebras
- Canonical example: the algebra of bounded linear operators on an Hilbert space forms a C^* (in fact, W^* -)algebra
- Form categories C*Alg and W*Alg
- We focus on W^* -algebras here, and assume all algebras are unital (but not necessarily commutative)

Categorical properties of W*Alg

- Theorem [Kornell 2016]: **W*Alg** is symmetric monoidal with the *spatial tensor product*
- Model of linear logic? Even better!
- Theorem [Kornell 2016]: W*Alg^{op} is monoidal closed with the free exponential construction!
- Intuition: W*Alg^{op} behaves like a "quantum version" of Set

Operator algebra models of linear logic

- Naturally, we ask if operator algebras can form a model of linear logic, like Vect_K or FHilb
- Answer: yes!
- Theorem [Cho & Westerbaan 2016A]: Set and W*Alg^{op} form a linear-non-linear model of linear logic in the sense of [Benton 1994]



Small ideas & conjectures

- W*Alg^{op} is actually a Lafont category! [Cho & Westerbaan 2016B] Unique duplication?
- Minor idea: verify the explicit constrution for free commutative comonoid [Melliès et al. 2009]
- What about classical linear logic? [Paykin & Zdancewic 2015] gives a Benton-style categorical construction of models of CLL; is W*Alg^{op} a model?
- Conjecture: W*Alg^{op} gives a model of classical linear logic

Other structures on **W*****Alg**^{op}

- Geometry of Interaction (GoI) has a close connection to quantum operations in QM
- Conjecture: a finite-dimensional subcategory of W*Alg^{op} is traced monoidal (≈ model of Gol)
- Naturally, one may want to extend it to differential linear logic
- Conjecture: W*Alg^{op} is a differential category ([Blute et al. 2006]), making it a model of DLL
- The finite-dimensional case is likely uninteresting ([Lemay 2019]), but the all-dimension case is very hopeful

Can we replace **Set** and **W*Alg**^{op}?

- What about the full category **C*Alg**^{op}?
- Theorem [Pavlov 2021]: W*Alg^{op}_{com} is equivalent to the category of compact strictly localizable enhanced measurable spaces; connections to probability?
- Another category: f.d. Hilbert spaces and quantum relations of [Weaver 2010]
- This category embeds into W*Alg^{op}; [Kornell 2021] calls this the category of *quantum sets*

On operator algebras, linear logic and categorical quantum mechanics

Non-commutativity, quantum physics and logic

Geometry	СТ	Logic	Physics
commutative	cartesian	non-linear	classical
non-commutative	sym. mon.	linear	quantum
(new geometry)	braided	braided	TQFT

This is just an intuition, nothing serious happening yet! But what can we do with this big picture?