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Abstract

This talk is a report on, as well as a defense of the usefulness of dependent types for developing
provably correct programs. We believe that dependent types—and dependently-typed programming
in Coq in particular—could allow for faster and safer development. There are already several accounts
about the utility of dependent types in practical program development, and in real-world applications.
Here we add to these accounts by outlining our experience in developing tree algorithms for succinct
data structures and proving them with the help of dependent types.

1 DMotivation: Formalization of Red-black Trees

Ever since its invention, dependently-typed programming has been mostly of theoretical interest. How-
ever, recent work has showed that dependently-typed programming could also be useful in practical
programming, especially when the program being developed has strict security requirements or complex
invariants [4l |13]. Here, we present another case where dependently-typed programming was used to
verify such algorithms—in this case, an algorithm that looks innocuous but in fact has rather byzantine
invariants.

The Problem Implementing deletion for purely functional red-black trees was long known to be a
tricky problem. Kahrs and Germane and Might have given relatively simple algorithms [6, 7], but
neither comes with a formal proof, and both proved difficult to refactor for our purposes. Also, we
could not easily reuse existing Coq formalizations of red-black trees (such as [2]) because our application
(to succinct data structuresﬂ [1]) required nodes decorated with meta-data. We started with a direct
translation of Kahrs’ algorithm to Coq, but soon we found ourselves unconvinced of the correctness of
our implementation and thus further progress was stalled.

Can Types Help? Type-driven development has been advocated in the functional programming com-
munity for a long time, but does it apply as well when we want to fully prove an algorithm? Dependent
types in Coq allow one to enforce invariants of data-structures and algorithms within their types. It is
tempting to use them to implement an algorithm together with its proof, possibly refining the invariants
on the go. We will compare that with the more traditional approach of using only ML-style polymorphic
types, and writing external lemmas to state the desired correctness properties (this is the approach we
used in our main development [1]).

For example, let btree be the type of colored binary trees. We can implement balancing in direct-style
along the following lines (see [l file dynamic_redblack.v| for all details):

1 Also referred to as “compact data structures” in some sources.



Definition balanceL col (1 r : dtree) dl : dtree := match col with
| Red => Bnode Red 1 dl r
| Black => match 1 with
| Bnode Red (Bnode Red a da b) dab ¢ =>
Bnode Red (Bnode Black a da b) dab (Bnode Black c (subD dl dab) r)
|

end end.

and prove the properties of balancing afterwards, e.g., the fact that balancing does not change the
level-order traversal of nodes:

Lemma dflatten_balancelL ¢ 1 r d : dflatten (balancelL c¢ 1 r d) = dflatten 1 ++ dflatten r.

We also prove lemmas about two orthogonal sets of invariants: the shape invariants which guarantee
that our trees are well-formed red-black trees, and the data integrity invariants which state that the
meta-data in our data representation correctly captures properties of the represented data.

Using dependent types, we can encode the tree invariants inside their types, and implement balancing
as a function returning not only the result but also a proof that it preserves the level-order of nodes:

Definition balancelL {nl ml d cl cr nr mr} p (1 : near_tree nl ml d cl1) (r : tree nr mr d cr)
color_ok p (fix_color 1) -> color_ok p cr —>
{tr : near_tree (nl + nr) (ml + mr) (inc_black d p) p | dflatteni tr = dflatteni 1 ++ dflatten r}.

Here near_tree and tree encode two variants of the red-black invariants, together with the data integrity
invariants, so that this type really encodes the full specification of balancing.

To define this function, Coq offers two possibilities for complete definitions: tactics or the Program [9)
command, both guiding interactive development through the typing context.

2 Red-black Trees Formalized using Dependent Types

In this talk, we report on the implementation using dependent types of a library of functions for red-black
trees. We have implemented functions for balancing, insertion, and deletion (as well as other functions
more specific to succinct data structures) using the three approaches (direct-style, dependent types with
tactics, dependent types with Program). We discuss in particular the following points:

e We compare the direct-style approach for formalizing red-black trees with approaches using de-
pendent types. The direct-style approach is documented elsewhere [1]. The dependent type-style
approach is documented in |1} file dynamic_dependent_tactic.v] for the approach using Coq tactics
and in [1} file dynamic_dependent_program.v| for the approach using the Program command. Overall,
developing using tactics is not as painful as one may think, as one has a lot of information from
the types to almost fully guide the development process. The version using Program, on the other
hand, was more problematic: at first, we ran into bugs and limitations of the system such that all
our attempts at defining balanceL failed. Eventually, we found out a way to write our algorithm
using Program—namely pattern-match explicitly on every case analysis, one at a time, even when
only one branch is impossible, but this unfortunately leads to extremely verbose code.

e Our effort is a substantial application of the Program command. For illustration, this can be

appreciated by the number of
obligations generated by Program (see the table

on the right). Note that in ddelete, none of the

. ) Program term ‘ generated oblig. ‘ remaining oblig.
goals were automatically solved because we dis- “Definition balanceL 30 7
abled the automatic simplification of goals (using  Definition balanceR 28 9
Obligation Tactic := idtac), since the default F:'pro:!.nt dins 27 20
Fixpoint ddelete 161 161

tactic used to simplify goals, program_simpl,
made some goals

invalid H However, using Solve All Obligations with program_simpl, we were eventually able to
solve 102 of the 161 obligations automatically.

2We have also consulted with the developers of Program about our issues.



What did “type-driven” mean in our experiment? In practice, we started with direct-style and felt
overwhelmed by the many intermediate lemmas. We realized that dependent types could help rationalize
our development without disrupting the process of proving. For this purpose, Program looked appropriate
but unfortunately turned out to be cumbersome. However, keeping dependent types and reverting to
proof using tactics cleared up the path so that we could eventually get back to complete the proof
using Program. The story is a bit different for deletion. At first, we couldn’t find the correct lemmas to
prove our adaptation of Kahrs’ algorithm. So we developed simultaneously a deletion algorithm and its
invariants using tactics. We then obtained a direct-style version by extracting the computational part
of the proof, and proved it separately. We also developed a Program version based on the direct-style
version. Moreover, for the sake of comparison, one of the authors is also working on developing the same
algorithms using Coq Equations [10], Agda, and F* [11] ﬂ

3 Related Work

McBride gives a fully correct-by-construction, dependently-typed version of insertion and deletion al-
gorithms for 2-3 trees [§], and the same approach can be easily applied to red-black trees as well.
However, while McBride’s algorithm is elegant and generalizable, it requires a deep understanding of
many dependently-typed programming techniques, and of the fact that insertion into and deletion from
balanced trees are instances of the indexed zipper construction. Although McBride’s approach can also
be characterized as “type-driven”, it serves a different purpose, namely using dependent types to program
certain algorithms in a generic way.

Weirich also gives a dependently-typed version of insertion and deletion algorithms for red-black
trees [12] in dependently-typed Haskell [5]. Weirich’s version is similar to Chlipala’s well-known dependently-
typed formalization of red-black trees in Coq [3] (although Chlipala omits the deletion operation, which
is significantly harder than insertion). The earliest known attempt in developing insertion & deletion
algorithms for red-black trees with type-level correctness guarantees is due to Kahrs, although the invari-
ants enforced in Kahrs’ work [7] are significantly weaker than in the other versions, due to the absence
of many features essential for dependently-typed programming in Haskell at the time.
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