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GADTs and principality

• Principality of GADT inference is known to be difficult

• OCaml proven to be principal thanks to ambivalent types,
which allow to detect ambiguity escaping from a branch
[Garrigue & Rémy 2013]

type (_,_) eq = Refl : ('a,'a) eq;;

let f (type a) (w : (a,int) eq) (x : a) = (* coherent *)
let Refl = w in if x > 0 then x else x ;;

val f : ('a, int) eq -> 'a -> 'a (* can infer result *)

let g (type a) (w : (a,int) eq) (x : a) = (* ambiguous *)
let Refl = w in if x > 0 then x else 0 ;;

Error: This instance of int is ambiguous:
it would escape the scope of its equation
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Ambivalent types in a nutshell
• Types that rely on GADT equations are represented as

ambivalent types, which are a form of intersection types.

• Ambivalent types are only valid when equations are available,
but their reliance on equations is implicit.

let f (type a) (w : (a,int) eq) (x : a) =
let Refl = w in (* add the equation a = int *)
if x > 0 (* this x has ambivalent type a ∧ int *)
then x else x (* but these have only type a *)

(* Hence the result is of type a *)
val f : ('a, int) eq -> 'a -> 'a

let g (type a) (w : (a,int) eq) (x : a) =
let Refl = w in if x > 0
then x (* this x has type a *)
else 0 (* but 0 has type int *)

(* The result has type a ∧ int, which becomes ambiguous *)
Error: This instance of int is ambiguous
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Disambiguation

• Type annotations hide the ambivalence, by separating inner
and outer types.

• This solves ambiguities. The following are valid:

let g (type a) (w : (a,int) eq) (x : a) =
let Refl = w in (if x > 0 then x else 0 : a) ;;

val g : ('a, int) eq -> 'a -> 'a

let g (type a) (w : (a,int) eq) (x : a) =
let Refl = w in (if x > 0 then x else 0 : int) ;;

val g : ('a, int) eq -> 'a -> int

OCaml lets you write the annotation outside if your prefer.
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But is it really principal?

When looking for reduction rules validating subject reduction, we
came upon the following example:

let f (type a b) (w1 : (a, b -> b) eq)
(w2 : (a, int -> int) eq) (g : a) =

let Refl = w1 in let Refl = w2 in g 3;;
val f : ('a, 'b -> 'b) eq -> ('a, int -> int) eq -> 'a -> 'b

let f (type a b) (w1 : (a, b -> b) eq)
(w2 : (a, int -> int) eq) (g : a) =

let Refl = w2 in let Refl = w1 in g 3;;
val f : ('a, 'b -> 'b) eq -> ('a, int -> int) eq -> 'a -> int

• Changing the order of equations changes the resulting type.

• Bug in the theory: the ambivalence of g is not propagated to
the result of the application g 3, failing to detect ambiguity.
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Proving a fix in Coq

• We already proved soundness and principality for another
fragment of OCaml, using a graph representation of types
[Garrigue 2014, Structural Polymorphism].

α :: κ; x : σ ` M : α

Here κ’s are kinds, which describe nodes.

• By enriching the information in kinds with rigid variable paths,
we can represent correct ambivalence.

• Principality is hard to prove, but subject reduction is already a
good benchmark for a well-behaved type system.
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Kinds and environments
• Kinds are constraints on a node, representing the graph

structure: α = (β → γ) ∧ a translates to

α :: (→, {dom 7→ β, cod 7→ γ})a, β :: •a.dom, γ :: •a.cod . α

• Grammar

ψ ::= → | eq | . . . abstract constraint
C ::= • | (ψ, {l 7→ α, . . . }) graph constraint
κ ::= Cr̄ kind
r ::= a | r .l rigid variable path
τ ::= r | τ → τ | eq(τ, τ) tree type
Q ::= ∅ | Q, τ = τ equations
K ::= ∅ | K , α :: κ kinding environment
σ ::= ∀ᾱ.K . α type scheme
Γ ::= ∅ | Γ, x : σ typing environment
θ ::= [α 7→ α′, . . . ] substitution
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Terms and Judgments

• Well-formedness

Q;K ` κ Q ` K Q;K ` σ Q;K ` Γ K ` θ : K ′

• Terms

M ::= x | c | λx .M | M M | let x = M in M
| (M : τ) type annotation
| Refl equation introduction
| type a.M rigid variable introduction
| use M : eq(τ, τ) in M equation elimination

• Typing judgment
Q;K ; Γ ` M : α

Typing implies both Q ` K and Q;K ` Γ.
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Selected typing rules

Use

Q;K ; Γ ` M1 : θ(α0) Q, τ1 = τ2;K ; Γ ` M2 : α
[[eq(τ1, τ2)]] = ∀ᾱ.K0 . α0 K0 ` θ : K

Q;K ; Γ ` use M1 : eq(τ1, τ2) in M2 : α

GC
Q;K ,K ′; Γ ` M : α FVK (Γ, α) ∩ dom(K ′) = ∅

Q;K ; Γ ` M : α

Var
Q ` K Q;K ` Γ x : ∀ᾱ.K0 . α ∈ Γ K ,K0 ` θ : K

Q;K ; Γ ` x : θ(α)

App

Q;K ; Γ ` M1 : α Q;K ; Γ ` M2 : α2

α :: (→, {dom 7→ α2 , cod 7→ α1})r̄ ∈ K

Q;K ; Γ ` M1 M2 : α1
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Coq development

• Based on “A certified implementation of ML with structural
polymorphism and recursive types” [Garrigue 2014].

• Itself based on Arthur Charguéraud’s development, using
locally nameless cofinite quantification (“Engineering
Metatheory” [Aydemir et al. 2008]).

• Avoided unification in the type system by interpreting Q as
the set of its (rigid) unifiers.

• Finished proofs of substitution lemmas, but “interesting”
cases of subject reduction remain.

(M1 : τ2 → τ1) M2 −→ (M1 (M2 : τ2) : τ1)
(M1 : r) M2 −→ (M1 (M2 : r .dom) : r .cod)
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Challenges and benefits of a legacy codebase

• The codebase is old, but updating was not too difficult.

• Freshness of variables relies on automation; easily broken but
not hard to fix.

• Many interactions mean many new lemmas, and longer proofs.

• No need to revise the overall structure of proofs.
Experienced no major technical stumbling block.

• Locally nameless quantification still seems a good fit.

• Question: would it be better to switch to a standard decision
procedure for set disjointness?
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