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GADTs and principality

® Principality of GADT inference is known to be difficult

e OCaml proven to be principal thanks to ambivalent types,
which allow to detect ambiguity escaping from a branch
[Garrigue & Rémy 2013]

type (_,_) eq = Refl : ('a,'a) eq;;

let f (type a) (w : (a,int) eq) (x : a) = (* coherent *)
let Refl = w in if x > 0 then x else x ;;

val f : ('a, int) eq -> 'a -> 'a (* can infer result %)

let g (type a) (w : (a,int) eq) (x : a) = (* ambiguous *)

let Refl = w in if x > 0 then x else 0 ;;
Error: This instance of int is ambiguous:
it would escape the scope of its equation
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Ambivalent types in a nutshell

® Types that rely on GADT equations are represented as
ambivalent types, which are a form of intersection types.

® Ambivalent types are only valid when equations are available,
but their reliance on equations is implicit.

let f (type a) (w : (a,int) eq) (x : a) =
let Refl = w in (* add the equation a = int %)
if x >0 (x this x has ambivalent type a A int %)
then x else x (* but these have only type a *)

(x Hence the result is of type a *)

val f : ('a, int) eq -> 'a -> 'a

let g (type a) (w : (a,int) eq) (x : a) =
let Refl = w in if x > 0
then x (* this x has type a *)
else @ (* but @ has type int *)
(x The result has type a A int, which becomes ambiguous *)
Error: This instance of int is ambiguous
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Disambiguation

® Type annotations hide the ambivalence, by separating inner

and outer types.
This solves ambiguities. The following are valid:

let g (type a) (w : (a,int) eq) (x : a)
let Refl = w in (if x > 0 then x else 0 : a) ;;

val g : ('a, int) eq > 'a -> 'a

let g (type a) (w : (a,int) eq) (x : a)
let Refl = w in (if x > 0 then x else 0 : int) ;;
val g : ('a, int) eq -> 'a -> int

OCaml lets you write the annotation outside if your prefer.
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But is it really principal?

When looking for reduction rules validating subject reduction, we
came upon the following example:
let f (type a b) (wl : (a, b -> b) eq)
(w2 : (a, int -> int) eq) (g : a) =
let Refl = w1l in let Refl = w2 in g 3;;
val f : ('a, 'b => 'b) eq -> ('a, int -> int) eq > 'a -> 'b

let f (type a b) (wl : (a, b -> b) eq)
(w2 : (a, int -> int) eq) (g : a) =
let Refl = w2 in let Refl = wl in g 3;;
val f : ('a, 'b > 'b) eq > ('a, int -> int) eq -> 'a -> int
® Changing the order of equations changes the resulting type.

® Bug in the theory: the ambivalence of g is not propagated to
the result of the application g 3, failing to detect ambiguity.
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Proving a fix in Coq

® We already proved soundness and principality for another
fragment of OCaml, using a graph representation of types
[Garrigue 2014, Structural Polymorphism].

aRrR X 0FM:«

Here x's are kinds, which describe nodes.

® By enriching the information in kinds with rigid variable paths,
we can represent correct ambivalence.

® Principality is hard to prove, but subject reduction is already a
good benchmark for a well-behaved type system.
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Kinds and environments

e Kinds are constraints on a node, representing the graph
structure: o« = (S — y) Aa translates to

a (=, {dom— B,cod = ¥})a, B @1 doms Y it ®2.c0d >

® Grammar
Y o= —leq|... abstract constraint
C == eo|(¢,{l—a,...}) graph constraint
k = G kind
rou= alr.l rigid variable path
T = r|7—=7]|eq(r,T) tree type
Q = 0|Qr=r7 equations
K = 0|K,a:k kinding environment
o = Ya.Kra type scheme
r == 0|MNx:o typing environment
0 = [a—d,...] substitution
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Terms and Judgments
® Well-formedness

Q:KFk QFK Q:KFo Q:KFT KFO:K

® Terms
M = x|c|XxM|MM|letx=MinM
| (M:7) type annotation
| Refl equation introduction
| type a.M rigid variable introduction
|

use M :eq(7,7) in M equation elimination

® Typing judgment
QK ITHFM:«a

Typing implies both Q+ K and Q; K - T.
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Selected typing rules

QK TEM :0(cwy) Qm=m,KTHM:a«a
[eq(71, 72)] = Va.Ko > oo KoF6:K

Q; K;T Fuse My : eq(11,72) in My : «

QK,Ki\TEM:a FVg(T a)ndom(K')=10

QK THFM: «

QFK QKFT x:VaKopael K,KogF0:K

Q: KTk x:6(a)

QK THM :« QK THM:as
a (=, {dom— as,cod — a;})r € K

Q:K;TEM M :ay
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Coq development

Based on “A certified implementation of ML with structural
polymorphism and recursive types’ [Garrigue 2014].
Itself based on Arthur Charguéraud’s development, using

locally nameless cofinite quantification (“Engineering
Metatheory” [Aydemir et al. 2008]).

Avoided unification in the type system by interpreting @ as
the set of its (rigid) unifiers.

Finished proofs of substitution lemmas, but “interesting”
cases of subject reduction remain.

(Ml 1T — Tl) M2 — (M1 (M2 : 7'2) . 7'1)
(My:r) My — (My (My: r.dom) : r.cod)
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Challenges and benefits of a legacy codebase

The codebase is old, but updating was not too difficult.

Freshness of variables relies on automation; easily broken but
not hard to fix.

Many interactions mean many new lemmas, and longer proofs.

No need to revise the overall structure of proofs.
Experienced no major technical stumbling block.

Locally nameless quantification still seems a good fit.

Question: would it be better to switch to a standard decision
procedure for set disjointness?
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